Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array
the contiguous subarray
[−2,1,−3,4,−1,2,1,−5,4]
,the contiguous subarray
[4,−1,2,1]
has the largest sum = 6
.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
Solution 1: O(n)
public class Solution { public int maxSubArray(int[] A) { int max = A[0]; int[] sum = new int[A.length]; sum[0] = A[0];
for (int i = 1; i < A.length; i++) { sum[i] = Math.max(A[i], sum[i - 1] + A[i]); max = Math.max(max, sum[i]);
} return max; } }
Solution 2: O(n)
public class Solution {
public int maxSubArray(int[] A) {
int maxSum = Integer.MIN_VALUE;
return findMaxSub(A, 0, A.length - 1, maxSum);
}
public int findMaxSub(int[] A, int left, int right, int maxSum) {
if(left > right)
return Integer.MIN_VALUE;
int mid = (left + right) / 2;
int leftMax = findMaxSub(A, left, mid - 1, maxSum);
int rightMax = findMaxSub(A, mid + 1, right, maxSum);
maxSum = Math.max(maxSum, Math.max(leftMax, rightMax));
// mid -> left
int sum = 0;
int midLeftMax = 0;
for(int i = mid - 1; i >= left; i--) {
sum += A[i];
if(sum > midLeftMax)
midLeftMax = sum;
}
sum = 0;
// mid -> right
int midRightMax = 0;
for(int i = mid + 1; i <= right; i++) {
sum += A[i];
if(sum > midRightMax)
midRightMax = sum;
}
maxSum = Math.max(maxSum, midLeftMax+midRightMax+A[mid]);
return maxSum;
}
}
Key Concept: Use DP is simple or use device and conquer
沒有留言:
張貼留言