Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is
11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Solution:O(n)
public class Solution {
public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) {
if(triangle==null || triangle.size()==0)
return 0;
ArrayList<Integer> ret = new ArrayList<>();
for(int i=0;i<triangle.size();i++){
ArrayList<Integer> tmp = triangle.get(i);
ret.add(0,i>0?tmp.get(0)+ret.get(0):tmp.get(0));
for(int j=1;j<ret.size()-1;j++){
ret.set(j,Math.min(ret.get(j),ret.get(j+1))+tmp.get(j));
}
if(ret.size()>1)
ret.set(ret.size()-1,ret.get(ret.size()-1)+tmp.get(ret.size()-1));
}
int min=Integer.MAX_VALUE;
for(Integer tmp:ret){
min=Math.min(tmp,min);
}
return min;
}
}
Key Concept:DP and use O(n) spaces to save previous rsult
沒有留言:
張貼留言