Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is: (-1, 0, 0, 1) (-2, -1, 1, 2) (-2, 0, 0, 2)Solution: AcceptableO(n^3)
public class Solution { public ArrayList<ArrayList<Integer>> fourSum(int[] num, int target) { ArrayList<ArrayList<Integer>> list = new ArrayList<>(); if( num == null || num.length <4) return list; Arrays.sort(num); HashMap<ArrayList<Integer>,Boolean> map = new HashMap<>(); for(int i=0; i<num.length;i++){ for(int j=i+1; j<num.length;j++){ int s2 = num[i]+num[j]; int aim = target - s2; int start = j+1; int end = num.length-1; while(start<end){ if(num[start] + num[end] == aim){ ArrayList<Integer> slist = new ArrayList<>(); slist.add(num[i]); slist.add(num[j]); slist.add(num[start]); slist.add(num[end]); if(map.get(slist) == null){ list.add(slist); map.put(slist,true); } start++; end--; }else if(num[start] + num[end] < aim){ start++; }else{ end--; } } } } return list; } }
Key Concept: We can use two sum concept and reduce complexity to O(n*n*logn)
沒有留言:
張貼留言