Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
2,3,6,7
and target 7
,A solution set is:
[7]
[2, 2, 3]
Solution: O(n^2)
public class Solution {
public ArrayList<ArrayList<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
ArrayList<ArrayList<Integer>> ret = new ArrayList<>();
ArrayList<Integer> list = new ArrayList<Integer>();
getlist(candidates,target,list,ret,0);
return ret;
}
public void getlist(int[] candidates, int target, ArrayList<Integer> list,
ArrayList<ArrayList<Integer>> ret,int start){
if(target == 0){
ArrayList<Integer> t = new ArrayList<Integer>(list);
if(!ret.contains(t))
ret.add(t);
return;
}
for(int i=start; i<candidates.length; i++){
if(target-candidates[i]>=0){
list.add(candidates[i]);
getlist(candidates,target-candidates[i],list,ret,i);
list.remove(list.size()-1);
}else
break;
}
}
}
Key concept: Like stack, need to remove last after testing a candidate
沒有留言:
張貼留言