The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where
'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]Solution:O(n^2)
public class Solution { public ArrayList<String[]> solveNQueens(int n) { ArrayList<String[]> ret = new ArrayList<String[]>(); int[] loc = new int[n]; dfs(ret,loc,0,n); return ret; } public void dfs(ArrayList<String[]> ret, int[] loc, int cur, int n){ if(cur==n) getStr(ret,loc,n); else{ for(int i=0;i<n;i++){ loc[cur] = i; if(isValid(loc,cur)) dfs(ret,loc,cur+1,n); } } } public boolean isValid(int[] loc, int cur){ for(int i=0;i<cur;i++){ if(loc[i]==loc[cur]||Math.abs(loc[i]-loc[cur])==(cur-i)) return false; } return true; } public void getStr(ArrayList<String[]> ret, int[] loc, int n){ String[] ans = new String[n]; for(int i=0;i<n;i++){ String row = new String(); for(int j=0;j<n;j++){ if(j==loc[i]) row += "Q"; else row += "."; } ans[i] = row; } ret.add(ans); } }
Key concept: Use dfs to go through possible ways
沒有留言:
張貼留言